On the notion of "ground state" for the nonlinear Schrödinger equation on metric graphs Séminaire de Mathématiques de Valenciennes

Damien Galant

CERAMATHS/DMATHS Université Polytechnique Hauts-de-France

Département de Mathématique Université de Mons F R S - FNRS Research Fellow

Ground states

Joint work with Colette De Coster (UPHF), Simone Dovetta and Enrico Serra (Politecnico di Torino)

Thursday 15 December 2022

- 1 Metric graphs
- 2 The nonlinear Schrödinger equation on metric graphs
- 3 On the notion of ground state

4 Some proof techniques

What is a metric graph?

A metric graph is made of vertices

•

•

•

NLS

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

Ground states

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

metric graphs: the length of edges are important.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.

Ground states

Constructions based on halflines

The halfline

Metric graphs

Constructions based on halflines

Constructions based on halflines

The halfline

Some proof techniques

The 5-star graph

Metric graphs

Constructions based on halflines

The halfline

 ∞ ∞ ∞ ∞ ∞ ∞

The 5-star graph

The 6-star graph

A metric graph G with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3)

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f: \mathcal{G} \to \mathbb{R}$

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f: \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) et e_2 (length 3), a function $f:\mathcal{G}\to\mathbb{R}$, and the three associated real functions.

$$\int_{\mathcal{G}} f \, dx \stackrel{\text{def}}{=} \int_{0}^{5} f_{0}(x) \, dx + \int_{0}^{4} f_{1}(x) \, dx + \int_{0}^{3} f_{2}(x) \, dx$$

Why studying metric graphs?

Physical motivations

Modeling structures where only one spatial direction is important.

A « fat graph » and the underlying metric graph

Ground states

■ A boson¹ is a particle with integer spin.

¹Here we will consider composite bosons, like atoms.

- A boson¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.

Ground states

¹Here we will consider composite bosons, like atoms.

An application: atomtronics

- A boson¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at *Bose-Einstein condensation*.

¹Here we will consider composite bosons, like atoms.

An application: atomtronics

- A boson¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at *Bose-Einstein condensation*.
- This is really remarkable: macroscopic quantum phenomenon!

¹Here we will consider composite bosons, like atoms.

An application: atomtronics

- A boson¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at *Bose-Einstein condensation*.
- This is really remarkable: macroscopic quantum phenomenon!
- Since 2000: emergence of *atomtronics*, which studies circuits guiding the propagation of ultracold atoms.

¹Here we will consider composite bosons, like atoms.

• We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .
- We want to know what will be the common quantum state of a condensate confined in $\mathcal G$ for a given "quantity of matter" μ .

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .
- We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ .
- We work on the space

$$H^1_\mu(\mathcal{G}) = \left\{ u: \mathcal{G} o \mathbb{R} \;\middle|\; u ext{ is continuous, } u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu
ight\}$$

Metric graphs

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .
- We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ .
- We work on the space

$$H^1_{\mu}(\mathcal{G}) = \left\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu \right\}$$

and we consider the energy minimization problem

$$\inf_{u\in H^1_\mu(\mathcal{G})}\frac{1}{2}\int_{\mathcal{G}}|u'|^2-\frac{1}{p}\int_{\mathcal{G}}|u|^p,$$

where 2

Metric graphs

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G} .
- We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ .
- We work on the space

$$H^1_\mu(\mathcal{G}) = \left\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}), \int_{\mathcal{G}} |u|^2 = \mu \right\}$$

and we consider the energy minimization problem

$$\inf_{u\in H^1_\mu(\mathcal{G})}\frac{1}{2}\int_{\mathcal{G}}|u'|^2-\frac{1}{p}\int_{\mathcal{G}}|u|^p,$$

where 2 (Bose-Einstein: <math>p = 4).

Infimum vs minimum

Then

$$\inf_{\mathbb{R}} f = 0$$

but the infimum is not attained (i.e. is not a minimum).

The differential system

If a function $u\in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

The differential system

NIS

If a function $u\in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$\left\{ u''+|u|^{p-2}u=\lambda u \quad ext{on each edge e of \mathcal{G}},
ight.$$

The differential system

NIS

If a function $u\in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \end{cases}$$

If a function $u\in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \geq v} \frac{du}{dx_e}(v) = 0 & \text{for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

where the symbol $e \succ V$ means that the sum ranges over all edges of vertex V and where $\frac{du}{dx_e}(V)$ is the outgoing derivative of u at V.

The amerendar system

If a function $u\in H^1_\mu(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \\ \sum_{e \succ v} \frac{du}{dx_e}(v) = 0 & \text{for every vertex v of \mathcal{G},} \end{cases} \tag{NLS}$$

where the symbol $e \succ V$ means that the sum ranges over all edges of vertex V and where $\frac{du}{dx_e}(V)$ is the outgoing derivative of u at V.

Outgoing derivatives

The real line: $\mathcal{G} = \mathbb{R}$

$$S_{\mu}(\mathbb{R}) = \left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\mu$ is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

The real line: $\mathcal{G} = \mathbb{R}$

Metric graphs

$$S_{\mu}(\mathbb{R}) = \left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\mu$ is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

$$\mathcal{S}_{\mu}(\mathbb{R}) = \left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\mu$ is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$u'' + |u|^{p-2}u = \lambda u.$$

The halfline: $\mathcal{G} = \mathbb{R}^+ = [0, +\infty[$

$$\mathcal{S}_{\mu}(\mathbb{R}^{+})=\left\{\pm arphi_{2\mu}(x)_{|\mathbb{R}^{+}}
ight\}$$

Solutions are half-solitons: no more translations!

The positive solution on the 3-star graph

The positive solution on the 5-star graph

Metric graphs

■ The « ground state » energy level is given by

 $c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_u(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$

Two energy levels

Metric graphs

■ The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} rac{1}{2} \int_{\mathcal{G}} |u'|^2 - rac{1}{p} \int_{\mathcal{G}} |u|^p.$$

■ A ground state is a function $u \in H^1_\mu(\mathcal{G})$ with level $c_\mu(\mathcal{G})$. It is a solution of the differential system (NLS).

Two energy levels

Metric graphs

■ The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} rac{1}{2} \int_{\mathcal{G}} |u'|^2 - rac{1}{p} \int_{\mathcal{G}} |u|^p.$$

- A ground state is a function $u \in H^1_\mu(\mathcal{G})$ with level $c_\mu(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$\sigma_{\mu}(\mathcal{G}) = \inf_{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

Two energy levels

Metric graphs

■ The « ground state » energy level is given by

$$c_{\mu}(\mathcal{G}) = \inf_{u \in H^1_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

- A ground state is a function $u \in H^1_\mu(\mathcal{G})$ with level $c_\mu(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$\sigma_{\mu}(\mathcal{G}) = \inf_{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}} |u'|^2 - \frac{1}{p} \int_{\mathcal{G}} |u|^p.$$

■ A minimal action solution of the problem is a solution $u \in S_{\mu}(\mathcal{G})$ of the differential problem (NLS) of level $\sigma_{\mu}(\mathcal{G})$.

Cutting solitons on long edges or halflines

Proposition

Metric graphs

Assume that G has arbitrarily long edges (for instance, if G has at least one halfline). Then,

$$c_{\mu}(\mathcal{G}) \leq s_{\mu} := rac{1}{2} \int_{\mathcal{G}} |arphi_{\mu}'|^2 - rac{1}{p} \int_{\mathcal{G}} |arphi_{\mu}|^p.$$

Cutting solitons on long edges or halflines

Proposition

Assume that G has arbitrarily long edges (for instance, if G has at least one halfline). Then,

$$c_{\mu}(\mathcal{G}) \leq s_{\mu} := rac{1}{2} \int_{\mathcal{G}} |arphi_{\mu}'|^2 - rac{1}{p} \int_{\mathcal{G}} |arphi_{\mu}|^p.$$

Proof.

Metric graphs

For a *N*-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathcal{N}}{2}s_{\mu}.$$

Metric graphs

For a N-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

Metric graphs

For a N-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

An analysis shows that four cases are possible:

A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;

Metric graphs

For a N-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;

Metric graphs

For a N-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$, $\sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;

Metric graphs

For a N-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$, $\sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
- B2) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Metric graphs

For a *N*-star graph with $N \ge 3$, we have

$$s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=rac{\mathit{N}}{2}s_{\mu}.$$

An analysis shows that four cases are possible:

- A1) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G}), \ \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
- B2) $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Question

Are those four cases really possible for metric graphs?

Answer to the question

Metric graphs

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every $p \in]2,6[$, every $\mu > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph $\mathcal G$ where this alternative occurs.

Ground states

Metric graphs

Case A1
$$c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$$
 and both infima are attained

 $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained

The line

 $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained

•

The halfline

 $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and both infima are attained

The halfline

The line

The line with one pendant

Case B1

Metric graphs

$$c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G}), \ \sigma_{\mu}(\mathcal{G})$$
 is attained but not $c_{\mu}(\mathcal{G})$

N-star graphs, $N \ge 3$

Metric graphs

 $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained

Some proof techniques

Case B2

 $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained

A first existence result

Metric graphs

Theorem (Adami, Serra, Tilli 2014)

Let $\mathcal G$ be a metric graph with finitely many edges, including at least one halfline. Assume that

$$c_{\mu}(\mathcal{G}) < s_{\mu}$$
.

Then $c_{\mu}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case A1: $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$, both attained.

Some proof techniques

A first existence result

Theorem (Adami, Serra, Tilli 2014)

Let $\mathcal G$ be a metric graph with finitely many edges, including at least one halfline. Assume that

$$c_{\mu}(\mathcal{G}) < s_{\mu}$$
.

Then $c_{\mu}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case A1: $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$, both attained.

Example:

The line with one pendant

Decreasing rearrangement on the halfline

Decreasing rearrangement on the halfline

Fundamental property: for all t > 0,

$$\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x) > t\}) = \operatorname{meas}_{\mathbb{R}^+}(\{x \in \mathbb{R}^+, u^*(x) > t\}).$$

Decreasing rearrangement on the halfline

Fundamental property: for all t > 0,

$$\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x) > t\}) = \operatorname{meas}_{\mathbb{R}^+}(\{x \in \mathbb{R}^+, u^*(x) > t\}).$$

Consequence: for all $1 \leq p \leq +\infty$,

$$||u||_{L^p(\mathcal{G})} = ||u^*||_{L^p(\mathbb{R}^+)}.$$

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0,|\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0,|\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Pólya, G., Szegő, G. *Isoperimetric Inequalities in Mathematical Physics* Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

Ground states

The Pólya–Szegő inequality

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements, Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Ground states

- Pólya, G., Szegő, G. *Isoperimetric Inequalities in Mathematical Physics* Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements, Canadian Journal of Mathematics **22** (1970), no. 2, 408–430.
- Friedlander, L. Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) **55** (2005) no. 1, 199–211.

A simple case: affine functions

We assume that u is piecewise affine.

A simple case: affine functions

Metric graphs

We assume that u is piecewise affine.

A simple case: affine functions

We assume that u is piecewise affine.

A simple case: affine functions

Metric graphs

We assume that u is piecewise affine.

A simple case: affine functions

We assume that u is piecewise affine.

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $\|(u^*)'\|_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $\|(u^*)'\|_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}} \quad \Rightarrow \quad A \geq 4^2 B \geq B.$$

A refined Pólya-Szegő inequality...

... or the importance of the number of preimages

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Let $\mathbb{N} \geq 1$ be an integer. Assume that, for almost every $t \in]0, \|u\|_{\infty}[$, one has

$$u^{-1}(\{t\}) = \{x \in \mathcal{G} \mid u(x) = t\} \ge N.$$

Then one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \frac{1}{N^2} \|u'\|_{L^2(\mathcal{G})}.$$

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $x_0 \in \mathcal G$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal G \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Metric graphs

Definition (Adami, Serra, Tilli 2014)

NIS

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal{G} \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Some proof techniques

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal{G}])$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal{G}])$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $x_0 \in \mathcal G$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal G \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Consequence: all nonnegative $H^1(\mathcal{G})$ functions have at least two preimages for almost every $t \in]0, \|u\|_{\infty}[$.

Theorem (Adami, Serra, Tilli 2014)

If a metric graph ${\cal G}$ has at least one halfline and satisfies assumption (H), then

$$c_{\mu}(\mathcal{G}) := \inf_{u \in H^1_{\mu}(\mathcal{G})} E(u) = s_{\mu}$$

but it is never achieved

Metric graphs

Theorem (Adami, Serra, Tilli 2014)

If a metric graph ${\cal G}$ has at least one halfline and satisfies assumption (H), then

$$c_{\mu}(\mathcal{G}) := \inf_{u \in H^1_{\mu}(\mathcal{G})} E(u) = s_{\mu}$$

but it is never achieved, unless G is isometric to one of the exceptional graphs depicted in the next few slides.

Metric graphs

Exceptional graphs: the real line

Exceptional graphs: the real line with a tower of circles

A doubly constrained variational problem Compactness

We define

$$X_{\mathsf{e}} := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^\infty(\mathcal{G})} = \|u\|_{L^\infty(\mathsf{e})} \right\}$$

Ground states

where e is a given bounded edge of $\mathcal G$

A doubly constrained variational problem Compactness

We define

Metric graphs

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly–constrained minimization problem

$$c_{\mu}(\mathcal{G},e) := \inf_{u \in H_{u}^{1}(\mathcal{G}) \cap X_{e}} E(u).$$

A doubly constrained variational problem Compactness

We define

Metric graphs

$$X_e := \left\{u \in H^1(\mathcal{G}) \ | \ \|u\|_{L^\infty(\mathcal{G})} = \|u\|_{L^\infty(e)}\right\}$$

Ground states

where e is a given bounded edge of \mathcal{G} and we consider the doubly-constrained minimization problem

$$c_{\mu}(\mathcal{G},e) := \inf_{u \in H^1_{\mu}(\mathcal{G}) \cap X_e} E(u).$$

Theorem

There exists R > 0 depending only on μ and p such that, if G satisfies assumption (H) with a bounded edge e of length $R \geq \overline{R}$, then $c_u(\mathcal{G}, e)$ is attained.

A doubly constrained variational problem

An existence result

Theorem

Metric graphs

Let $\mathcal G$ satisfy assumption (H) with a bounded edge e of length R and $\ell_0 \leq \inf_{e \in E} |e|$. There exists $\widetilde{R} \geq \overline{R}$ (with \overline{R} given by the previous Theorem) depending only on ℓ_0 , μ and p such that if $R \geq \widetilde{R}$ and u is a minimizer for $c_\mu(\mathcal G,e)$, then $u \in \mathcal S_\mu(\mathcal G)$ and u>0 or u<0 on $\mathcal G$. Moreover,

$$||u||_{L^{\infty}(e)} > ||u||_{L^{\infty}(\mathcal{G}\setminus e)}.$$

Some proof techniques

What's going on in case A2?

 $c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G})$ and neither infima is attained

What's going on in case A2?

Using the previous results

■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G}) = s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

Using the previous results

• Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G}) = s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

Ground states

Cutting solitons on the loops, one sees that

$$c_{\mu}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\mu}$$

What's going on in case A2?

Using the previous results

 \blacksquare Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G}) = s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

Ground states

Cutting solitons on the loops, one sees that

$$c_{\mu}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\mu}$$

 $c_{\mu}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\mu}$ • According to the Theorems from the two previous slides, $c_{\mu}(\mathcal{G},\mathcal{L}_n)$ is attained by a solution of (NLS) for every n large enough.

What's going on in case A2?

Using the previous results

- \blacksquare Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G}) = s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\mu}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\mu}$$

- $c_{\mu}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\mu}$ According to the Theorems from the two previous slides, $c_{\mu}(\mathcal{G},\mathcal{L}_n)$ is attained by a solution of (NLS) for every n large enough.
- One obtains

$$s_{\mu} = c_{\mu}(\mathcal{G}) \leq \sigma_{\mu}(\mathcal{G}) \leq \liminf_{n \to \infty} c_{\mu}(\mathcal{G}, \mathcal{L}_n) = s_{\mu},$$

SO

$$c_{\mu}(\mathcal{G}) = \sigma_{\mu}(\mathcal{G}) = s_{\mu}$$

and neither infimum is attained.

What's going on in case B2?

 $c_{\mu}(\mathcal{G}) < \sigma_{\mu}(\mathcal{G})$ and neither infima is attained

The loops \mathcal{L}_i have length N and \mathcal{B} is made of N edges of length 1.

What's going on in case B2?

A second, periodic, graph

The graph $\widetilde{\mathcal{G}}_N$.

The loops $\widetilde{\mathcal{L}}_i$ have length N.

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\mu}=c_{\mu}(\mathcal{G}_{N})=c_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

Two problems at infinity

Metric graphs

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\mu}=c_{\mu}(\mathcal{G}_{N})=c_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of \mathcal{G}_N).

Two problems at infinity

Metric graphs

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\mu} = c_{\mu}(\mathcal{G}_{N}) = c_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N}) > s_{\mu}$.

Two problems at infinity

Metric graphs

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\mu} = c_{\mu}(\mathcal{G}_{N}) = c_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N}) > s_{\mu}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\mu}(\mathcal{G}_{N}) = \sigma_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\mu}(\mathcal{G}_N)$ is not attained.

Two problems at infinity

Metric graphs

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\mu} = c_{\mu}(\mathcal{G}_{N}) = c_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\mu}(\widetilde{\mathcal{G}}_{N}) > s_{\mu}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\mu}(\mathcal{G}_{N}) = \sigma_{\mu}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\mu}(\mathcal{G}_N)$ is not attained.

 \blacksquare Therefore, for large N, we have that

$$s_{\mu} = c_{\mu}(\mathcal{G}_{N}) < \sigma_{\mu}(\mathcal{G}_{N}),$$

and neither infima is attained, as claimed.

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

NIS

Main message

Mathematical motivations

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

"nice" Sobolev embeddings

NIS

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

• "nice" Sobolev embeddings, H¹ functions are continuous;

NIS

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;

NIS

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages;
- ODE techniques;

NIS

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;
- **...**;

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R} .

Ground states

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques:
- ;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur.

Mathematical motivations

Main message

Metric graphs

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques:
- ;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur. However, to this day, it remains on open problem!

Thanks for your attention! Merry Christmas!

Main papers

Adami, R., Serra, E., Tilli, P. *NLS ground states on graphs* Calculus of Variations and Partial Differential Equations, 54(1), 743-761 (2015).

De Coster C., Dovetta S., Galant D., Serra E. *On the notion of ground state for nonlinear Schrödinger equations on metric graphs* To appear.

Overviews of the subject

- Adami R., Serra E., Tilli P. *Nonlinear dynamics on branched structures and networks* https://arxiv.org/abs/1705.00529 (2017)
- Kairzhan A., Noja D., Pelinovsky D. *Standing waves on quantum graphs* J. Phys. A: Math. Theor. 55 243001 (2022)
- Adami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE)
 https://www.youtube.com/watch?v=G-FcnRVvoos (2020)

Why p < 6?

Given $u \in H^1(\mathbb{R})$, one has a one-parameter family of L^2 -norm preserving scalings $u \mapsto u_t$, where $u_t(x) := t^{1/2}u(tx)$. Direct computations show that

$$||u_t'||_{L^2}^2 = t^2 ||u'||_{L^2}^2, \qquad ||u_t||_{L^p}^p = t^{\frac{p}{2}-1} ||u||_{L^p}^p.$$

Hence,

$$E(u_t) = \frac{1}{2} \|u_t'\|_{L^2}^2 - \frac{1}{p} \|u_t\|_{L^p}^p = \frac{t^2}{2} \|u_t'\|_{L^2}^2 - \frac{t^{\frac{p}{2}-1}}{p} \|u_t\|_{L^p}^p.$$

If p > 6, the term with the negative sign wins, hence the energy functional is not bounded under the mass constraint. For more information about the $p \ge 6$ case, see e.g.

Chang X., Jeanjean L., Soave N. Normalized solutions of L^2 -supercritical NLS equations on compact metric graphs https://arxiv.org/abs/2204.01043 (2022)