On the notion of "ground state" for the nonlinear Schrödinger equation on metric graphs

Séminaire de Mathématiques de Valenciennes

Damien Galant

CERAMATHS/DMATHS	Département de Mathématique
Université Polytechnique	Université de Mons
Hauts-de-France	F.R.S.-FNRS Research Fellow

Y Université Polytechnique HAUTS-DE-FRANCE

Joint work with Colette De Coster (UPHF), Simone Dovetta and Enrico Serra (Politecnico di Torino)

Thursday 15 December 2022

1 Metric graphs

2 The nonlinear Schrödinger equation on metric graphs

3 On the notion of ground state

4 Some proof techniques

What is a metric graph?

A metric graph is made of vertices

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.

Constructions based on halflines

The halfline

Constructions based on halflines

$-\infty$

The halfline

The line

Constructions based on halflines

The halfline

The line

The 5-star graph

Constructions based on halflines

The halfline

The 5-star graph

The line

The 6-star graph

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3)

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions.

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions.

$$
\int_{\mathcal{G}} f \mathrm{~d} x \stackrel{\text { def }}{=} \int_{0}^{5} f_{0}(x) \mathrm{d} x+\int_{0}^{4} f_{1}(x) \mathrm{d} x+\int_{0}^{3} f_{2}(x) \mathrm{d} x
$$

Why studying metric graphs?

Physical motivations

Modeling structures where only one spatial direction is important.

A «fat graph » and the underlying metric graph

An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.

[^0]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.

[^1]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.

[^2]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!

[^3]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!
- Since 2000: emergence of atomtronics, which studies circuits guiding the propagation of ultracold atoms.

[^4]
The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

and we consider the energy minimization problem

$$
\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p}
$$

where $2<p<6$

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

and we consider the energy minimization problem

$$
\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p}
$$

where $2<p<6$ (Bose-Einstein: $p=4$).

Infimum vs minimum

Then

$$
\inf _{\mathbb{R}} f=0
$$

but the infimum is not attained (i.e. is not a minimum).

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\left\{\begin{array}{l}
u^{\prime \prime}+|u|^{p-2} u=\lambda u \quad \text { on each edge } e \text { of } \mathcal{G} \\
\end{array}\right.
$$

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge e of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{d u}{d x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges over all edges of vertex V and where $\frac{d u}{d x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V .

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge e of } \mathcal{G} \tag{NLS}\\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{d u}{d x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges over all edges of vertex V and where $\frac{d u}{d x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V .

Outgoing derivatives

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The halfline: $\mathcal{G}=\mathbb{R}^{+}=[0,+\infty[$

Solutions are half-solitons: no more translations!

The positive solution on the 3-star graph

The positive solution on the 5-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

Two energy levels

- The « ground state » energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

Two energy levels

- The « ground state » energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$
\sigma_{\mu}(\mathcal{G})=\inf _{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$
\sigma_{\mu}(\mathcal{G})=\inf _{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A minimal action solution of the problem is a solution $u \in \mathcal{S}_{\mu}(\mathcal{G})$ of the differential problem (NLS) of level $\sigma_{\mu}(\mathcal{G})$.

Cutting solitons on long edges or halflines

Proposition

Assume that \mathcal{G} has arbitrarily long edges (for instance, if \mathcal{G} has at least one halfline). Then,

$$
c_{\mu}(\mathcal{G}) \leq s_{\mu}:=\frac{1}{2} \int_{\mathcal{G}}\left|\varphi_{\mu}^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}\left|\varphi_{\mu}\right|^{p} .
$$

Cutting solitons on long edges or halflines

Proposition

Assume that \mathcal{G} has arbitrarily long edges (for instance, if \mathcal{G} has at least one halfline). Then,

$$
c_{\mu}(\mathcal{G}) \leq s_{\mu}:=\frac{1}{2} \int_{\mathcal{G}}\left|\varphi_{\mu}^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}\left|\varphi_{\mu}\right|^{p} .
$$

Proof.

Metric graphs
 Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu}
$$

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu}
$$

An analysis shows that four cases are possible:

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu}
$$

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu}
$$

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu} .
$$

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu} .
$$

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
B2) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Four cases

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu} .
$$

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
B2) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Question

Are those four cases really possible for metric graphs?

Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every $p \in] 2,6[$, every $\mu>0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

Case A1

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained

Compact graphs

Case A1

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained

Compact graphs

The line

Metric graphs Case AI

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained

Compact graphs

The line

The halfline

Metric graphs
 Case A1

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained

Compact graphs

The halfline

The line

The line with one pendant

Case B1

$c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$

N-star graphs, $N \geq 3$

Case A2

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained

Case B2

$c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained

A first existence result

Theorem (Adami, Serra, Tilli 2014)

Let \mathcal{G} be a metric graph with finitely many edges, including at least one halfline. Assume that

$$
c_{\mu}(\mathcal{G})<s_{\mu} .
$$

Then $c_{\mu}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case $A 1$: $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$, both attained.

A first existence result

Theorem (Adami, Serra, Tilli 2014)

Let \mathcal{G} be a metric graph with finitely many edges, including at least one halfline. Assume that

$$
c_{\mu}(\mathcal{G})<s_{\mu} .
$$

Then $c_{\mu}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case $A 1: c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$, both attained.

Example:

The line with one pendant

Decreasing rearrangement on the halfline

Decreasing rearrangement on the halfline

Fundamental property: for all $t>0$,

$$
\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x)>t\})=\operatorname{meas}_{\mathbb{R}^{+}}\left(\left\{x \in \mathbb{R}^{+}, u^{*}(x)>t\right\}\right)
$$

Decreasing rearrangement on the halfline

Fundamental property: for all $t>0$,

$$
\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x)>t\})=\operatorname{meas}_{\mathbb{R}^{+}}\left(\left\{x \in \mathbb{R}^{+}, u^{*}(x)>t\right\}\right)
$$

Consequence: for all $1 \leq p \leq+\infty$,

$$
\|u\|_{L^{p}(\mathcal{G})}=\left\|u^{*}\right\|_{L^{p}\left(\mathbb{R}^{+}\right)} .
$$

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

: Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
目 Duff, G. Integral Inequalities for Equimeasurable Rearrangements, Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

第 Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
目 Duff, G. Integral Inequalities for Equimeasurable Rearrangements, Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005) no. 1, 199-211.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $/ \subseteq u(\mathcal{G})$ so that $u^{-1}(/)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $/ \subseteq u(\mathcal{G})$ so that $u^{-1}(/)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $/ \subseteq u(\mathcal{G})$ so that $u^{-1}(/)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(/)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

Inequality between arithmetic and harmonic means:

$$
\frac{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}{4} \geq \frac{4}{\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}+\frac{1}{\ell_{3}}+\frac{1}{\ell_{4}}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

Inequality between arithmetic and harmonic means:

$$
\frac{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}{4} \geq \frac{4}{\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}+\frac{1}{\ell_{3}}+\frac{1}{\ell_{4}}} \quad \Rightarrow \quad A \geq 4^{2} B \geq B
$$

A refined Pólya-Szegő inequality...

\ldots or the importance of the number of preimages

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Let $N \geq 1$ be an integer. Assume that, for almost every $t \in] 0,\|u\|_{\infty}[$, one has

$$
u^{-1}(\{t\})=\{x \in \mathcal{G} \mid u(x)=t\} \geq N .
$$

Then one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq \frac{1}{N^{2}}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Consequence: all nonnegative $H^{1}(\mathcal{G})$ functions have at least two preimages for almost every $t \in] 0,\|u\|_{\infty}[$.

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} has at least one halfline and satisfies assumption (H), then

$$
c_{\mu}(\mathcal{G}):=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} E(u)=s_{\mu}
$$

but it is never achieved

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} has at least one halfline and satisfies assumption (H), then

$$
c_{\mu}(\mathcal{G}):=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} E(u)=s_{\mu}
$$

but it is never achieved, unless \mathcal{G} is isometric to one of the exceptional graphs depicted in the next few slides.

Metric graphs
 Non-existence of ground states

Exceptional graphs: the real line

Non-existence of ground states

Exceptional graphs: the real line with a tower of circles

A doubly constrained variational problem

Compactness

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G}

A doubly constrained variational problem

Compactness

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly-constrained minimization problem

$$
c_{\mu}(\mathcal{G}, e):=\inf _{u \in H_{\mu}^{1}(\mathcal{G}) \cap X_{e}} E(u) .
$$

A doubly constrained variational problem

Compactness

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly-constrained minimization problem

$$
c_{\mu}(\mathcal{G}, e):=\inf _{u \in H_{\mu}^{1}(\mathcal{G}) \cap X_{e}} E(u) .
$$

Theorem

There exists $\bar{R}>0$ depending only on μ and p such that, if \mathcal{G} satisfies assumption (H) with a bounded edge e of length $R \geq \bar{R}$, then $c_{\mu}(\mathcal{G}, e)$ is attained.

A doubly constrained variational problem

An existence result

Theorem

Let \mathcal{G} satisfy assumption $(\underset{\sim}{H})$ with a bounded edge e of length R and $\ell_{0} \leq \inf _{e \in E}|e|$. There exists $\widetilde{R} \geq \bar{R}$ (with \bar{R} given by the previous Theorem) depending only on ℓ_{0}, μ and p such that if $R \geq \widetilde{R}$ and u is a minimizer for $c_{\mu}(\mathcal{G}, e)$, then $u \in \mathcal{S}_{\mu}(\mathcal{G})$ and $u>0$ or $u<0$ on \mathcal{G}. Moreover,

$$
\|u\|_{L^{\infty}(e)}>\|u\|_{L^{\infty}(\mathcal{G} \backslash e)} .
$$

What's going on in case A2?

$c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained

What's going on in case A2?

Using the previous results
■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G})=s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

What's going on in case A2?

Using the previous results
■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G})=s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

- Cutting solitons on the loops, one sees that

$$
c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} s_{\mu}
$$

What's going on in case A2?

Using the previous results
■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G})=s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
■ Cutting solitons on the loops, one sees that

$$
c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right) \xrightarrow[n \rightarrow \infty]{ } s_{\mu}
$$

- According to the Theorems from the ${ }^{n} \mathrm{tw}^{\infty}$ p previous slides, $c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right)$ is attained by a solution of (NLS) for every n large enough.

What's going on in case A2?

Using the previous results
■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\mu}(\mathcal{G})=s_{\mu}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

- Cutting solitons on the loops, one sees that

$$
c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right) \underset{n \rightarrow \infty}{ } s_{\mu}
$$

- According to the Theorems from the ${ }^{n \rightarrow \infty}$ two previous slides, $c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right)$ is attained by a solution of (NLS) for every n large enough.
- One obtains

$$
s_{\mu}=c_{\mu}(\mathcal{G}) \leq \sigma_{\mu}(\mathcal{G}) \leq \liminf _{n \rightarrow \infty} c_{\mu}\left(\mathcal{G}, \mathcal{L}_{n}\right)=s_{\mu}
$$

SO

$$
c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})=s_{\mu}
$$

and neither infimum is attained.

What's going on in case B2?

$c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained

The loops \mathcal{L}_{i} have length N and \mathcal{B} is made of N edges of length 1 .

What's going on in case B2?

A second, periodic, graph

The loops $\widetilde{\mathcal{L}}_{i}$ have length N.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)=c_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\tilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)=c_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$).

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)=c_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\left.\widetilde{\mathcal{G}}_{N}\right)$. Hence $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\mu}$.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)=c_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\mu}$.
■ One then shows, using suitable rearrangement techniques, that

$$
\sigma_{\mu}\left(\mathcal{G}_{N}\right)=\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

but that $\sigma_{\mu}\left(\mathcal{G}_{N}\right)$ is not attained.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)=c_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\mu}$.
■ One then shows, using suitable rearrangement techniques, that

$$
\sigma_{\mu}\left(\mathcal{G}_{N}\right)=\sigma_{\mu}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

but that $\sigma_{\mu}\left(\mathcal{G}_{N}\right)$ is not attained.

- Therefore, for large N, we have that

$$
s_{\mu}=c_{\mu}\left(\mathcal{G}_{N}\right)<\sigma_{\mu}\left(\mathcal{G}_{N}\right)
$$

and neither infima is attained, as claimed.

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ and $H^{1}(\mathcal{G})$ by $H^{1}(\Omega)$ or $H_{0}^{1}(\Omega)$, one expects that the four cases $A 1, A 2, B 1, B 2$ actually occur.

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ and $H^{1}(\mathcal{G})$ by $H^{1}(\Omega)$ or $H_{0}^{1}(\Omega)$, one expects that the four cases $A 1, A 2, B 1, B 2$ actually occur. However, to this day, it remains on open problem!

Thanks for your attention!

Merry Christmas!

Thanks for your attention!

Merry Christmas!

Main papers

(idami, R., Serra, E., Tilli, P. NLS ground states on graphs Calculus of Variations and Partial Differential Equations, 54(1), 743-761 (2015).
(io De Coster C., Dovetta S., Galant D., Serra E. On the notion of ground state for nonlinear Schrödinger equations on metric graphs To appear.

Overviews of the subject

囯 Adami R．，Serra E．，Tilli P．Nonlinear dynamics on branched structures and networks https：／／arxiv．org／abs／1705．00529（2017）
國 Kairzhan A．，Noja D．，Pelinovsky D．Standing waves on quantum graphs J．Phys．A：Math．Theor． 55243001 （2022）
国 Adami R．Ground states of the Nonlinear Schrodinger Equation on Graphs：an overview（Lisbon WADE） https：／／www．youtube．com／watch？v＝G－FcnRVvoos（2020）

Why $p<6$?

Given $u \in H^{1}(\mathbb{R})$, one has a one-parameter family of L^{2}-norm preserving scalings $u \mapsto u_{t}$, where $u_{t}(x):=t^{1 / 2} u(t x)$. Direct computations show that

$$
\left\|u_{t}^{\prime}\right\|_{L^{2}}^{2}=t^{2}\left\|u^{\prime}\right\|_{L^{2}}^{2}, \quad\left\|u_{t}\right\|_{L^{p}}^{p}=t^{p}-1\|u\|_{L^{p}}^{p}
$$

Hence,

$$
E\left(u_{t}\right)=\frac{1}{2}\left\|u_{t}^{\prime}\right\|_{L^{2}}^{2}-\frac{1}{p}\left\|u_{t}\right\|_{L^{p}}^{p}=\frac{t^{2}}{2}\left\|u_{t}^{\prime}\right\|_{L^{2}}^{2}-\frac{t^{\frac{p}{2}-1}}{p}\left\|u_{t}\right\|_{L^{p}}^{p} .
$$

If $p>6$, the term with the negative sign wins, hence the energy functional is not bounded under the mass constraint. For more information about the $p \geq 6$ case, see e.g.
Chang X., Jeanjean L., Soave N. Normalized solutions of L^{2}-supercritical NLS equations on compact metric graphs https://arxiv.org/abs/2204.01043 (2022)

[^0]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^1]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^2]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^3]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^4]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

